Influence of Leaf Starch Concentration on CO(2) Assimilation in Soybean.

نویسندگان

  • E D Nafziger
  • H R Koller
چکیده

Net photosynthetic rate, CO(2) compensation concentration, and starch and soluble sugar concentrations were measured in soybean (Glycine max [L.] Merrill) leaves in an attempt to evaluate the effect of carbohydrate concentration on rate of CO(2) assimilation.Plants were grown in a controlled environment room at 23.5 C, 50% relative humidity, 16-hour photoperiod, and quantum flux (400-700 nm) of 510 mueinsteins/m(2).sec (30,090 lux) at plant level. On the 21st day after seeding, plants were subjected for 12.5 hours to one of three CO(2) concentrations (50, 300, or 2000 mul/l) in an attempt to alter leaf carbohydrate levels. Following the CO(2) treatment, gas exchange measurements were made at a CO(2) concentration of 300 mul/l on the lowermost trifoliolate leaf. Immediately after measurement, the leaf was removed and stored at -20 C until carbohydrate analyses were performed.Increasing the CO(2) concentration for 12.5 hours significantly increased leaf starch concentration but not soluble sugar concentration. There was a strong negative correlation between net photosynthetic rate and starch concentration. Net photosynthetic rate declined from approximately 38 to 22 mg CO(2)/dm(2) leaf area.hr as starch concentration increased from 0.5 to 3 mg/cm(2) leaf area. Carbohydrate concentrations had no effect on compensation concentration.The decrease in net photosynthetic rate as starch concentration increased resulted from an increase in mesophyll (liquid phase) CO(2) diffusion resistance. This suggests that starch accumulation may reduce net photosynthetic rate by impeding intracellular CO(2) transport.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relationships between Carbon Assimilation, Partitioning, and Export in Leaves of Two Soybean Cultivars.

To evaluate leaf carbon balance during rapid pod-fill in soybean (Glycine max [L.] Merrill), measurements were made of CO(2) assimilation at mid-day and changes in specific leaf weight, starch, and sucrose concentrations over a 9-hour interval. Assimilate export was estimated from CO(2) assimilation and leaf dry matter accumulation. Chamber-grown ;Amsoy 71' and ;Wells' plants were subjected on ...

متن کامل

Daytime and nighttime carbon balance and assimilate export in soybean leaves at different photon flux densities.

To evaluate daytime and nighttime carbon balance and assimilate export in soybean (Glycine max [L.] Merrill) leaves at different photon flux densities, rates of CO(2) exchange, specific leaf weights, and concentrations of sucrose and starch were measured at intervals in leaves of pod-bearing ;Amsoy 71' and ;Wells II' plants grown in a controlled environment room. Assimilate export was estimated...

متن کامل

The effects of elevated CO2 concentration on soybean gene expression. An analysis of growing and mature leaves.

Improvements in carbon assimilation and water-use efficiency lead to increases in maximum leaf area index at elevated carbon dioxide concentration ([CO(2)]); however, the molecular drivers for this increase are unknown. We investigated the molecular basis for changes in leaf development at elevated [CO(2)] using soybeans (Glycine max) grown under fully open air conditions at the Soybean Free Ai...

متن کامل

Carbon assimilation and translocation in soybean leaves at different stages of development.

Carbon assimilation, translocation, and associated biochemical characteristics of the second trifoliolate leaf (numbered acropetally) of chamber-grown soybean, Glycine max (L.) Merr., plants were studied at selected stages of leaf development during the period from 10 to 25 days postemergence. Leaves of uniform age were selected on the basis of leaf plastochron index (LPI).The test leaf reached...

متن کامل

Biochemical Basis for Partitioning of Photosynthetically Fixed Carbon between Starch and Sucrose in Soybean (Glycine max Merr.) Leaves.

The control of photosynthetic starch/sucrose formation in leaves of soybean (Glycine max L. Merr.) cultivars was studied in relation to stage of plant development, photosynthetic photoperiod, and nitrogen source. At each sampling, leaf tissue was analyzed for starch content, activities of sucrose-metabolizing enzymes, and labeling of starch and sucrose (by (14)CO(2) assimilation) in isolated ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 57 4  شماره 

صفحات  -

تاریخ انتشار 1976